ANGLE SA500S SUCTION SCANNER SEMI-AUTOMATIC SUCTION SCANNER SCREEN FILTERS

DESCRIPTION

Semi-automatic filter.

STANDARD CHARACTERISTICS

- Filter element: Stainless Steel screen AISI 316 mesh, 3 layer
- Available filtration: from 120 micron
- Filter housing material of construction: Carbon Steel ST37.2
- Pre-treatment: sand blasting up to Sa 2.5 grade
- Two layered coating process consisting of a one primary coating Rich Zinc (60-70 $\mathbf{\mu m}$ thickness) and a final protective coating of Phenolic Epoxy (70-80 $\mu \mathrm{m}$ thickness)
- Connections: Victaulic and Flanged
- Maximum recommended working pressure: up to 10 bar (145 psi)
- Minimum operating working pressure during flushing: 1 Bar (14.5 psi)
- Equipped with pressure gauge which indicates the pressure difference of 5 m
- Clean screen pressure loss: up to 0.1 Bar (1.45psi)

OPERATION

Water flows through the inlet along and through the cylindrical screen trapping the solids on the screen. The filter can be manually cleaned while still pressurized and without removing the screen. The operator cleans the screen by opening the flush valve and turning the handle, fully up and the back down. As a result the suction nozzles traverse the entire screen removing trapped debris. The whole process takes a few seconds.

MODEL	INLET/OUTLETDIAMETER	MAX FLOW	Filtration		X	Y	H
			SURFACE	EFFECTIVE AREA			
	INCH	M ${ }^{3} / \mathbf{H R}$	CM ${ }^{2}$	CM ${ }^{2}$	MM	MM	MM
SA504S	4	80	3,275	2,620	240	350	833
SA506S	6	150	4,674	3,740	240	450	1,165
SA508S	8	250	6,070	4,856	240	550	1,360
SA510S	10	500	7,482	5,985	250	1100	1,150
SA512S	12	600	12,142	9,713	280	1250	1,765
SA514S	14	750	18,213	14,370	315	1470	1,985

Maximum recommended Flow Rate - 120 micron in good quality water
Backwash flow: $176 \mathrm{gpm}\left(40 \mathrm{~m}^{3} / \mathrm{hr}\right.$)

PRESSURE LOSS AT 120 MICRON

